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Abstract— This paper presents dynamic multi-swarm particle
swarm optimizer (DMS-PSO) technique to obtain short-term fixed
and variable head hydrothermal scheduling. DMS-PSO is a local
version of PSO in which the populations of particles are divided into
a number of groups; basically a single swarm is divided into multi
sub-swarmsto avoid the premature convergence of PSO. These sub-
swarms are regrouped frequently according to a regrouping strategy.
In this way diversity between the sub-swarm is maintained and better
solutions are to be obtained. The validity and effectiveness of
proposed algorithms has been tested with various standard
hydrothermal test systems.

1. INTRODUCTION

Optimal scheduling of power plant generation has an
important role in the electric utility systems. The main
objective of the short-term hydrothermal scheduling (STHTS)
is to determine the power generation by each thermal and
hydro units which minimizes the total fuel cost of thermal
units while satisfying various operational constraints. Several
conventional methods are used to obtain the power generation
of hydrothermal units such as mixed integer programming [1],
A-y iteration method [2], pontryagin’s maximum principle [3]
and dynamic programming [4] etc... Among all the techniques
dynamic programming seems to be most popular [11]. Most of
the classical techniques takes large time in computation
procedure and uses large memory space. In the recent years,
the use of heuristic search techniques increases because of
their advantages over classical techniques. The advantages of
heuristic search techniques over classical techniques are
robust, parallelism, no requirement of gradient, fast, less
memory requirement and reliable etc. [5]. Several heuristic
search technique are there such as predator pray optimization
[5], hopfield neural networks technique [6], simulated
annealing [7], differential evolution [8] and genetic algorithm
[9,10] applied by various researchers on STHTS. Artificial
immune technique [11] applied by M. Basu for optimum
scheduling of hydrothermal units. Teaching learning based
optimization [12] applied by P.K. Roy to STHTS problem
which also considers prohibited discharge zone. Gravitational
search technique [13] applied by Bhattacharya et al. on
STHTS. Civilized swarm optimization technique [14] applied

by A.l. Selvakumar which is based on the behaviour of a
civilized society. Cuckoo search algorithm [15] applied by
T.T. Nguyen on STHTS problem. PSO [16] applied by
Mandalet al. on STHTS. PSO has a limitation of premature
convergence and sometimes the solution of PSO trap into local
minima which may not reach to the global minima [17]. To
avoid the limitation of classical PSO various researchers
applied different variants of PSO on the STHTS problem such
as improved PSO [17], constriction factor based PSO [18]
etc... J.J. Liang [19] introduced and applied the DMS-PSO
technique on the set of benchmark function provided by
CEC2005.

In this paper DMS-PSO technique is applied to obtain the
optimum scheduling of short-term fixed and variable head
hydrothermal scheduling. This paper considers hydrothermal
test systems with water discharge rate as a quadratic function
of hydro powers. The thermal unit fuel cost is modeled as
summation of quadratic function of thermal power and
sinusoidal function representing valve point loading effect.

2. NOMENCLATURE

F is the total fuel cost of thermal units ($).

ay;, Ay, as;, a4; and ag; are the fuel cost coefficients of it"
thermal unit .

P, is generated power of i*" generating unit during k" sub-
interval.

P™mandP™* is the lower and upper limits on the it
generating unit, respectively.

t,is the duration of k" sub-interval.
N is number of thermal units.

T is total scheduling time.

M is the number of hydro units.

K;is proportionality constant of jt* hydro unit.

Y1), Y2j » ¥3; are discharge rate coefficients of jt" hydro unit.
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7yj, Z; , Z3; are head variation coefficient of jt* hydro unit.
S;is the surface area of the reservoir of j** unit.
Ij is inflow rateof j** hydro unit..

PprandPy, is power demand and loss during k" sub-interval,
respectively.

Bj;, By, and By, are B-coefficients.
q]"“” andg;"** are limits on water discharge rate.

R;is predefined volume of water available for jt* hydro unit.
1, is exterior penalty factor.

NP is number of particles in a group.

N+M is number of members in a particle.

c;andc, are acceleration constants.

rand(1) and rand(2) are uniform random numbers between 0
and 1.

IT is iteration and ITM* js maximum number of iterations.
3. PROBLEM FORMULATION

The purpose of the STHTS problem is to minimize the fuel
cost associated with thermal units while satisfying several
operational constraints.

3.1. Thermal model

The generating cost of thermal units is generally given by the
sum of quadratic function of thermal powers and a sinusoidal
function indicates the valve point loading. The fuel cost is
mathematically modelled as [11]:

F =
Yho1 215 tie (@ PY + aziPy + az; +
a4 isinags iPimin— Pik (D)

3.2. Short-term hydro model

The water discharge rate of j** hydro unit at k" sub-interval
is given by Glimn-Kirchmayer model [20] such as:

Qe = K ®(Pyy) : Fixed head 2
Qi = K@ (Poi) w(hy) : Variable head 3)
(=1,2,....M; m = j+N; k=1,2,....,T)
The functions @ and v are represented as:
O(Py) = y1,PE + Y2 Pk + V3; 4)
y(h k)_ zyh ]k + Zyi b + 23 5)

(=1,2,....M; k=1,2,.....T)

For a variable head reservoir, effective head at k' sub-
interval is given by head continuity equation:

hi k+1y = B + (ij djk) (6)

(4=1.2,....,M; k:1,2,....,T)
3.3. Short-term hydro thermal scheduling problem

The objective of STHTS is to determine the optimal power
generation of hydrothermal units so as to minimize the total
fuel cost of thermal units while satisfying several equality and
inequality constraints.

Obijective:
Minimize
F=3L_ 3N, ty(ay P} + az Py + as; + ag sin{as;(P™™ — Py)}) (7)
Subject to constraints
(i) load demand constraint during each sub-interval
SNM Py =Py + Py (k=12,....,T) (8)

(if) Water discharge of each hydro unit over a period should
balance the available volume

Yicitqu =R (i71.2,....,M) ©)
(iii) Water discharge rate limits on hydro units are

Q" < qp < @ (=12,...,M; k=1,2,....T) (10)
The bounds on Hydro and thermal power generators are

PMm < Py < P (i=1,2,...,.N+M; k=12,....T)  (11)

Transmission losses (P;;) during each sub-interval k is given
by Kron’s loss formula using B-coefficients [20] is:

Py = M YN Py By Py + 20 Py By + Bog
k=1,2,....T)

(12)

4. CONSTRAINT HANDLING

Short-term fixed and variable head hydrothermal scheduling is
limited by two equality constraints; power demand equality
constraint and available water equality constraint and one
inequality constraint; limits on water discharge rate of each
hydro plant. In fixed and variable head short-term
hydrothermal scheduling problem decision variables are
thermal and hydro power.

During the search of decision variables if the constraints are
not satisfied then all the constraints are handled by generating
individual errors and an exterior penalty is applied to each
error.

Error from power demand equality constraint

ey = XM Py — Ppy — Py (13)
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Error from available water equality constraint
ey = Yho1 ik — R (14)

Water discharge rate inequality constraint can violate either by
exceeding the upper limit or by falls below the lower limit

(i) If the water discharge rate exceeds the upper limit

then, error is calculated as

—_ max
€3 =(q;

(ii) If the water discharge rate falls below the lower limit

— Gk (15)

then, error is calculated as
€3 =gk — qjmm (16)

The objective function is formed by adding all the errors in the
fuel cost, mathematically

Obj. =F + 1, x (ef + e} + %) (17)

5. PARTICLE SWARM OPTIMIZATION

PSO is a population based meta-heuristic algorithm introduced
by Kennedy and Eberhart [21] in 1995. PSO provides the
global exploration and local exploitation to find the optimum
solution. PSO starts with random initialization of particles
position and velocity within search space which subsequently
updates the velocity and position to minimize the objective.
Each particle in PSOconsider the current position, current
velocity, distance to pbest, and distance to gbest to modify its
position. PSO was mathematically formulated as:

VEH = w x Vf + € x rand (1) x (Pbestl-tj - xfj) + (%
rand(2) x (Gbest! — x! (18)
xitj+1 _ xitj + Vi§+1 (19)

(i=1,2,.

where, V¢ is the velocity of the j** particle at t‘" iteration
which is limited between minimum and maximum value of
velocity, as given below

W NP:j=1,2,....N+M)

V]'-min < V-t < V]v.max

ij = (20)

w is inertia weight factor which is continuously decreasing
from w™ = 0.9 to w™" = 0.4, mathematically given as

w=wne - (S X T 1)

6. DYNAMIC MULTI SWARM PARTICLE SWARM
OPTIMIZER

DMS-PSO is the local version of PSO in which whole
population is divided into small number of sub-swarms [19].
Now, the swarm will search the best position by considering
the historical information of the own sub-swarm group.

Vi = w x Vi + € x rand (1) x (Pbestl-tj - fj) +(; %
rand(2) x (Ibest; — x; (22)

where, Ibestf is the best position achieved by I*" sub-swarm
till £t* iteration.

The velocity and the position of the swarm are update by the
equation (22) and (19), respectively. However, the sub-
swarms are dynamic and they are regrouped frequently by
using a regrouping schedule, which is a periodic exchange of
information. Particles from different sub-swarms are
regrouped to a newfigoration through the random
regrouping schedule. In this way, the search space of each
small sub-swarm is expanded and better solutions are possible
to be found by the new small sub-swarm.

7. DEVELOPMENT OF PROPOSED TECHNIQUE

In this section, DMS-PSO technique is discussed for optimal
scheduling of hydrothermal plants with fixed and variable
head reservoirs. The algorithm starts with random
initialization of decision variables. For a hydrothermal system
having N number of thermal and M number of hydro units,
position of i*" particle is initializes randomly within the
feasible region according to equation (11) which can be
represented as

X2 =(P%,PS, ... Pl) (1=1,2,...... , NP)(23)

Now, the velocity is also randomly generated for each particle
according to equation (20) as

P=wi vy, V) (1=1,2,...... , NP) (24)
V™% is set to 10-20% of the dynamic range of the decision

variable while W"m was set to 5-10% of the dynamic range of
the decision variable but always with the negative sign [20].

Now, algorithm can be described as:

Step(1): Read data; viz. Maximum iteration (ITM®*),
population size, limits of velocity and other algorithm
constants.

Step(2): Randomly initialize the velocity of particles and
position of particles within the search space.

Step(3): For each particle, calculate the objective function
using eq.(17).

Step(4): If iteration count IT< 0.8*ITmax, go to next step,
otherwise go to step 9.

Step(5): Divide the whole particles randomly into [ no. of sub-
swarm randomly.

Step(6): Update position and velocity of each particle
according to eq.(22) and (19), respectively.
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Step(7): Update the Pbest for each particle and choose the
particle with minimum objective function for each ‘" sub-
swarm as Ibest;.

Step(8): Recombine the swarms in a single group and go to
step 4.

Step(9): Update velocity and position of each particle
according to eq.(18) and (19), respectively.

Step(10): Update the Pbest for each particle and choose the
particle with minimum objective function as Gbest.

Step(11): If maximum number of iteration reached, go to next
step, otherwise go to step 9.

Step(12): The value of Gbest obtained is the final result.
8. TEST SYSTEMS AND RESULTS

To check the performance and capability of the proposed
technique, two hydrothermal test system are used which are

Test systeml: Test systeml is for short-term fixed head
hydrothermal scheduling, it consists of two thermal and two
hydro generating units with valve point loading [11].

To obtain the optimal solution of STHTS for test systems 1 the
parameters of PSO such as w™* | w™" ¢, ¢,, NP and
IT™* are setto 0.4, 0.9, 2, 2, 50 and 200, respectively.

Test system2: Test system2 is for short-term variable head
hydrothermal scheduling, it consists of two thermal and two
hydro generating units [18].

To obtain the optimal solution of STHTS for test system?2 the
parameters of PSOw™ |, w™" ¢, c,, NP and IT™* are set
t0 0.5, 0.95, 2, 2, 60 and 350, respectively.

Tablel: Comparison of results

Result obtained of case 2

Table 3-1: Power generation during the period of 24h

Thermal Power(MW) | Hydro Power(MW)

k Pix Pk Psk Py | Pu(MW)
1 |196.3024 |422.2505 |200.0000 |5.0000 23.5532
2 199.00127 |338.1651 |200.0000 |79.8658 |17.0322
3 |200.1406 |208.8656 |200.0000 |5.0000 14.0066
4 |50.0000 3259828 [231.7830 |5.0000 12.7662
5 |50.0000 175.0000 |256.6084 |132.9938 |14.6025
6 |50.0000 410.7386 |200.0000 |5.0000 15.17387
7 |50.0000 222.7925 |550.0000 |5.0000 27.7924
8 2455375 |496.3561 |289.7791 |5.0000 36.6728
9 |207.1574 |750.0000 |259.9323 |178.7585 |65.8482
10 |193.2051 |731.4419 |438.0439 |54.0833 |66.7744
11 |245.4904 |750.0000 |526.4801 |5.0000 76.9707

12 |300.0000 |608.5291 |375.9155 [300.0000 |84.4445
13 |300.0000 |695.7584 |362.6896 |5.0000 63.4483
14 |179.9478 |750.0000 |253.1359 |234.8569 |67.9406
15 |300.0000 |654.4105 |457.5854 |5.0000 66.9963
16 |281.7671 |552.8118 |550.0000 |54.6516 |69.2305
17 |222.6052 |677.3734 |327.8141 |300.0000 |77.7926
18 |300.0000 |750.0000 |505.7320 |[105.3529 |91.0855
19 |300.0000 |741.4076 |328.7127 |136.0454 |76.1658
20 |300.0000 |562.4399 |446.4973 |[108.2788 |67.2161
21 |300.0000 |448.4933 |302.1949 |[280.6492 |61.3373
22 |222.0952 |579.7883 |390.6387 |5.0015 47.5240
23 |300.0000 |392.6204 |243.8334 [101.8114 |38.2653
24 1220.0594 |266.9351 |288.1815 |[155.7868 |30.9629

Table 3-2: Water discharge rate and head variation during the
period of 24h

Water discharge rate(m®/ | Effective head variation(m)
Test systeml Test system2 k h)

Method Cost($) Method Cost($) 91k 92k hy hyy
AIS [11] 66,117 CFPSO[18] 69801.29 1 (6303419  |6.307875 300.0000 250.0000
DE[11] 66,121 GA[18] 69801.48 2 [63.02095  |82.06738 299.9370 249.9842
EP[11] 66,198 DMS-PSO 69338.55 3 [63.00772 6.301243 299.8739 249.7791
DMS-PSO  |65,310 4 7440815  |6.30077 299.8109 249.7633

_ _ 5 [8357558  |139.5279 299.7365 2497476

Teble 2: Result obtained of case 1 6 |6296136  |6.289844 299.6529 249.3988

Thermal Power (Vi) | Tiydro Power (Vi) 7 (2101669  |6.289373 299.5900 2493830

8 [96.1088 6.283903 299.3798 2493673

k Pu P Pt Pac | PudMW) | es07 (1913063 299.2837 249.3516
1 |147.0753 |402.8825 |227.3519 |151.3204 |28.6302 : : : :

2328148 | 5048385 |338.0402 |176.5749 |52.2684 10 |157.6964 | 54.96801 2991990  |248.8733

3 [2006364 |612.8444 | 2684283 |62.34204 |44.2511 11 |198.4208  |6.270032 299.0413 | 248.7359

12 |130.6725 | 339.5091 298.8429 248.7202

13 |125.0980  |6.244295 208.7122 2478712

14 (8196252  |256.4963 2085871 2478556

15 |166.0740  |6.224828 298.5052 2472144

16 |209.2955  |55.10707 208.3301 247.1988

17 |110.6590 | 336.9300 298.1298 247.0611
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18 |187.9366 107.3685 298.0191 246.2187
19 |110.9092 140.3728 297.8312 245.9503
20 |160.6782 110.1622 297.7203 245.5994
21 |100.3394 309.6882 297.5596 245.3240
22 |136.2713 6.147984 297.4593 244.5497
23 |78.19025 102.7820 297.3230 2445344
24 (9481731 160.9595 297.2448 2442774

9. CONCLUSION

The DMS-PSO technique has been applied to the STHTS
problem. Results obtained are compared with other available
technique and found better. The use of multi-swarm with
random regrouping of swarms will provide necessary diversity
to the swarms which lead to the solution towards global
solution.
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